Bioactive Hydrogel Substrates: Probing Leukocyte Receptor–Ligand Interactions in Parallel Plate Flow Chamber Studies

TitleBioactive Hydrogel Substrates: Probing Leukocyte Receptor–Ligand Interactions in Parallel Plate Flow Chamber Studies
Publication TypeJournal Article
Year of Publication2006
AuthorsTaite, LJ, Rowland, ML, Ruffino, KA, Smith, BRE, Lawrence, MB, West, JL
JournalAnnals of Biomedical Engineering
Volume34
Issue11
Pagination1705 - 1711
Date Published11/2006
ISSN1573-9686
Keywordsflow chamber; hydrogels; leukocyte adhesion; poly(ethylene glycol)
Abstract

The binding of activated integrins on the surface of leukocytes facilitates the adhesion of leukocytes to vascular endothelium during inflammation. Interactions between selectins and their ligands mediate rolling, and are believed to play an important role in leukocyte adhesion, though the minimal recognition motif required for physiologic interactions is not known. We have developed a novel system using poly(ethylene glycol) (PEG) hydrogels modified with either integrin-binding peptide sequences or the selectin ligand sialyl Lewis X (SLe(X)) within a parallel plate flow chamber to examine the dynamics of leukocyte adhesion to specific ligands. The adhesive peptide sequences arginine-glycine-aspartic acid-serine (RGDS) and leucine-aspartic acid-valine (LDV) as well as sialyl Lewis X were bound to the surface of photopolymerized PEG diacrylate hydrogels. Leukocytes perfused over these gels in a parallel plate flow chamber at physiological shear rates demonstrate both rolling and firm adhesion, depending on the identity and concentration of ligand bound to the hydrogel substrate. This new system provides a unique polymer-based model for the study of interactions between leukocytes and endothelium as well as a platform to develop improved scaffolds for cardiovascular tissue engineering.

DOI10.1007/s10439-006-9173-x
Short TitleAnn Biomed Eng
Full Text