Hydrogel-Coated Near Infrared Absorbing Nanoshells as Light-Responsive Drug Delivery Vehicles

TitleHydrogel-Coated Near Infrared Absorbing Nanoshells as Light-Responsive Drug Delivery Vehicles
Publication TypeJournal Article
Year of Publication2015
AuthorsStrong, LE, West, JL
JournalACS Biomaterials Science & Engineering
Pagination150713080020006
Date Published07/2015
ISSN2373-9878
Keywordsatom transfer radical polymerization (ATRP); drug delivery; gold nanoshells; N-isopropylacrylamide; optically triggered; Thermally responsive
Abstract

Nanoparticle drug delivery carriers that can modulate drug release based on an exogenous signal, such as light, are of great interest, especially for improving cancer therapy. A light-activated delivery vehicle was fabricated by synthesizing a thin, thermally responsive poly(N-isopropylacrylamide-co-acrylamide) hydrogel coating directly onto the surfaces of individual near-infrared (NIR) absorbing gold-silica nanoshells. This hydrogel was designed to be in a swollen state under physiological conditions and expel large amounts of water, along with any entrapped drug, at elevated temperatures. The required temperature change can be achieved via NIR absorption by the nanoshell, allowing the hydrogel phase change to be triggered by light, which was observed by monitoring changes in particle sizes as water was expelled from the hydrogel network. The phase change was reversible and repeatable. As a model drug, the chemotherapeutic doxorubicin was loaded into this delivery vehicle, and rapid release of doxorubicin occurred upon NIR exposure. Further, colon carcinoma cells exposed to the irradiated platform displayed nearly 3 times as much doxorubicin uptake as cells exposed to nonirradiated particles or free drug, which in turn resulted in a higher loss of cell viability. We hypothesize these effects are because the NIR-mediated heating results in a transient increase in cell membrane permeability, thus aiding in cellular uptake of the drug.

DOI10.1021/acsbiomaterials.5b00111
Short TitleACS Biomater. Sci. Eng.
Full Text